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Keywords: tra�c equilibrium problem, nonlinear complementarity prob-lem, networks, road pricing1 IntroductionParaphrasing Wardrop [34], the (static) tra�c equilibrium problem is to�nd a set of path 
ows that satisfy certain demand constraints and have theproperty that the cost on all used paths connecting an origin-destinationpair is equal and less than or equal to the cost on all unused paths connect-ing that pair. In order to prove existence/uniqueness results and developconvergent algorithms, this problem has been formulated as a nonlinearprogram (NLP) [5], a nonlinear complementarity problem (NCP) [2, 33], avariational inequality problem (VI) [10, 11, 12, 30], and a �xed-point problem(FP) [4].Though the tra�c equilibrium problem generally is stated in terms ofpath 
ows, paths usually are considered to be a nuisance by the developersof algorithms. There are two reasons. First, path \names" generally consistof the list of links or nodes that constitute the path, and these \names" canbecome quite long and hence di�cult to store and manipulate. Second, sincethe path set cannot (e�ciently) be completely enumerated, the number ofpaths is not known a priori, thereby complicating memory management andcreating other software engineering di�culties.In order to avoid the nuisance of storing and manipulating paths, it isquite common (in both the theoretical literature and in practice) to assumethat the cost on a path is the sum of the costs on the links that make up thatpath. This assumption makes it possible to use (what is generally referredto as) an arc formulation of the problem and not store path 
ows.The purpose of this paper is twofold: (1) to show that, although it isconvenient, the additivity assumption is inappropriate in a variety of di�er-ent situations and (2) to describe a method for solving a nonadditive versionof the problem. The particular model and algorithm we present allows forasymmetric elastic demand functions and asymmetric and nonadditive costfunctions. Though we do not discuss it here, these results can also be appliedto probabilistic versions of the problem (e.g., stochastic user equilibrium andentropy models), although we do not discuss such cases here.2



2 Equilibrium with Nonadditive Path CostsThe (static, deterministic) tra�c equilibrium problem (TEP) is typicallyset on a network comprising a set of arcs, A, and a set of nodes, N , withcardinalities nA and nN , respectively. Associated with this network is a setof origin-destination pairs, I , with cardinality nI . People travel between aparticular origin-destination (O-D) pair i 2 I on a path in the set Pi, theset of paths connecting O-D pair i. The cost experienced by a person usingpath p is given by Cp : RnP+ ! R+ where nP denotes the cardinality of theset of paths P = [i2IPi.In the most general version of this problem, path costs can be a functionof the entire vector of path 
ows and the number of people traveling betweenO-D pair i, and the demand function Di : RnI+ ! R+ is a function of thevector of (minimum) O-D travel costs, (minr2Pj Cr(F ) : j 2 I). In thiscase, an equilibrium is typically de�ned as follows (see [7] for a discussionof alternative de�nitions):De�nition 1 A path 
ow vector, F 2 RnP+ , is said to be an elastic tra�cequilibrium i� Fp > 0) Cp(F ) = minr2PiCr(F ) (1)for all i 2 I, p 2 Pi, andXp2Pi Fp = Di(minr2Pj Cr(F ) : j 2 I) (2)for all i 2 I.The inelastic equilibrium problem is a special case of the elastic problem inwhich Di(�) is constant.Additive CostsPerhaps the most natural way to formulate the TEP as an NLP, NCP, VI,or FP is to use path variables. However, these formulations have not beenwidely used because they are thought to be di�cult to solve. In particular,when path variables are used, either the paths must be completely enumer-ated before the algorithm begins or the paths must be identi�ed \on the
y". The �rst solution is computationally burdensome, and the second isthought to be cumbersome because the incidence relationship between paths3



and arcs must be maintained and manipulated and the number of paths isnot known a priori.To overcome these di�culties, one often assumes that the cost on apath p is simply the sum of the costs on each arc in p. Speci�cally, letting� = [�ap] represent the arc-path incidence matrix, c : RnA+ ! RnA the arccost function, and f 2 RnA+ represent the arc 
ow vector, the additive modelassumes C(F ) = �T c(f); (3)with f = �F ; here C is the vector of path cost functions.The signi�cance of this assumption is that it allows the path 
ow vari-ables to be removed from the objective function of the NLP formulation ofTEP (in the case of symmetric arc cost functions) and from the inequalityin the VI formulation of TEP (in the case of general arc cost functions).Although the path 
ow variables remain in the constraint set, it becomespossible to solve TEP without storing path 
ows. This has two importantimplications from a software development standpoint. First, it means thatthe number of decision variables that need to be stored is known in advance(i.e., nA + nI), thus greatly simplifying memory allocation. Second, the de-cision variables that are being stored can be easily identi�ed (i.e., by theirarc number in the case of arc 
ows and by their O-D number or associatedpair of node numbers in the case of O-D demands/costs).Situations in Which Costs Are Not AdditiveUnfortunately, although they have been essentially ignored in the past byboth researchers and practitioners, there are many situations in which theadditivity assumption is inappropriate. These situations are particularlyimportant today, in light of recent legislation such as the Intermodal Sur-face Transportation E�ciency Act (which promotes congestion pricing pro-grams) and the Clean Air Act Amendments (which mandate a reduction inautomobile emissions in many cities). That is, a variety of transportationpolicies are being considered today that cannot adequately be evaluated byusing additive path costs.Nonlinear Valuation of Travel TimeThe cost on a path typically includes, at a minimum, the time costs andthe money costs of using that path. Using an additive model, one typically4



assumes that the arc cost functions have the following form:ca(f) = �a + �1ta(f) + �2ta(f)for all arcs a, where �a is the (distance-based) �nancial cost of using arc a,(e.g., tolls and distance-based operating costs such as maintenance), ta(f) isthe time to traverse arc a given the current arcs 
ows f , �1 is the time-basedoperating costs (e.g., gasoline consumption), and �2 is the dollar value oftime.However, it has often been observed [19] that people value time nonlin-early. That is, small amounts of time have relatively low value whereas largeamounts of time are very valuable. As a result, one must �rst calculate thetotal time on the path and apply the value of time function to this total.Assuming that time-based operating costs are still a linear function of thetotal travel time, one is left with path cost functions of the following form:Cp(F ) = Xa2A �ap(�a + �1ta(f)) + gp Xa2A �apta(f)! ;where gp(�) is an increasing function that converts time to money for pathp. In actual applications, gp is unlikely to vary across paths although onecan imagine situations in which the value of time varies with the attributesof the path (e.g., how pleasant the path is).Nonadditive Tolls and FaresWhen discussing the nonlinear valuation of travel time we assumed that thetoll on a path was simply the sum of the tolls on the arcs that make upthat path. Unfortunately this is often not the case. It is quite common forboth highway tolls and transit fares (which are of interest because it is quitecommon to consider multimodal equilibria) to be nonadditive. For example,consider the following fares on the BART system:ToFremont Union City South Hayward Hayward Bay FairFremont 0.90 0.90 0.90 1.90From Union City 0.90 0.90 0.90S. Hayward 0.90 0.90It is easy to see, for example, that the fare from Fremont to Bay Fair ($1.90)does not equal the fare from Fremont to Union City ($0.90) plus the fare from5



Union City to South Hayward ($0.90) plus the fare from South Hayward toHayward ($0.90) plus the fare from Hayward to Bay Fair ($0.90).In fact, almost no toll roads or transit systems in the United Stateshave an additive toll/fare structure. Instead, one must work with the path-speci�c �nancial costs directly, which, even ignoring nonlinear value timefunctions, makes the path cost functions nonadditive.Emissions FeesIt has long been argued that emissions fees should be used to internalizethe externalities associated with automobile emissions. This strategy mayresult in nonadditive costs for two reasons. First, there is some evidence thatemissions of hydrocarbons and carbon monoxide are a nonlinear function oftravel times. Second, there is little doubt that social costs are a nonlinearfunction of emissions [20]. Hence, in order to set tolls equal to the thedi�erence between the social marginal cost and the private average cost, theywill need to be path-speci�c. Such a path-speci�c toll structure immediatelyleads to nonadditive path cost functions.The Nonlinear Complementarity FormulationCombining the three observations above, one sees that a general path costfunction would have the following form:Cp(F ) = �p(F ) +Xa2p �1ta(f) + gp0@Xa2p :�apta(f)1A ; (4)where �p now denotes the path-speci�c �ncancial costs (which are allowedto vary with 
ow levels to allow for di�erent kinds of pricing schemes). Mostexisting \path 
ow" formulations of TEP continue to be appropriate whenusing such a nonadditive path cost function. For our purposes, the mostimportant of these is the NCP formulation [2]. In this formulation, theproblem is to �nd the (path 
ows, O-D costs) vector pair (F; u) such thatGF (F; u) = C(F )� �u � 0 F � 0 GF (F; u)TF = 0Gu(F; u) = �TF �D(u) � 0 u � 0 Gu(F; u)Tu = 0; (5)where � is the path{Origin{Destination pair incidence matrix.We make the weak assumptions that the functions C and D are di�er-entiable and that for each path p, the function Cp is positive. Additionally,6



we assume that Di is a nonnegative function for all i 2 I . As a result, anequivalent system has �TF �D(u) � 0 replaced by �TF �D(u) = 0, whichis the more usual form of the conservation of demand constraint [2]. We notethat if the ith O-D pair has positive demand (i.e., Di(u) > 0) the ui variablemeasures the cost on the cheapest path value for O-D pair i. However, whenDi(u) = 0, it is possible that the ui variable can be less than or equal to thecheapest path value; see Lemma 1 in Section 3.In what follows, we will need to assume that the tra�c equilibrium prob-lems being solved are guaranteed to have a solution. We make use of thefollowing result, which is Theorem 5.4 in [2].Theorem 1 Suppose (N;A) is a strongly connected network and that Cp :Rnp+ ! R+ is a positive continuous function for all p 2 P . Also supposethat for all i 2 I, Di : Rni+ ! R+ is a nonnegative continuous function thatis bounded from above. Then TEP has a solution.3 An Algorithm for Solving the Nonadditive Prob-lemAs discussed above, perhaps the biggest advantage of the additive model isthat it can be solved without the necessity of storing path 
ows. Many of themost widely applied algorithms take advantage of this fact [14, 23, 26, 27].However, two types of schemes do generate and store path 
ows as needed:simplicial decomposition and column generation.In simplicial decomposition, the set of feasible 
ows is given as a boundedconvex polyhedron so that each element can be described as a convex combi-nation of the extreme 
ows of this set. The algorithms of this type proceedby working on the convex hull of a working set of extreme points, checkingfor termination conditions to be met. The weights associated with the cur-rent set of extreme points are then taken to be the decision variables. Asa result, a signi�cantly smaller number of variables is needed. Some recentexamples of the simplicial decomposition approach include the work of Pangand Yu [29], who combined a linearization of the VI form of the problemwith simplicial decomposition, and Lawphongpanich and Hearn [22], Smith[31, 32], and Marcotte and Gu�elat [25], whose simplicial decomposition ap-proaches used a so-called gap function, a nonnegative measure that was zeroonly at an equilibrium point. For an extensive history on this approach, theinterested reader should see the recent survey by Larsson and Patricksson[21]. 7



In the column generation approach, path 
ows are generated only whenneeded, thereby reducing the computational burden. The key is to have thealgorithm identify those paths that will have 
ow on them in an equilibriumsolution. Examples of column generation methods as applied to the TEP in-clude the early work of Leventhal, Nemhauser and Trotter [24], who studiedthe case of separable costs; Bertsekas and Gafni [8], who combined a projec-tion method for the associated VI with a decomposition by O-D pairs; andAashtiani [1] whose Ph.D. dissertation concerned a similar approach. Seethe survey [21] for further details.In this section, we present a new algorithm for solving the path-
ow for-mulation of the TEP that is based on the recent NE/SQP method (for non-smooth equations/sequential quadratic programming) for solving the NCP[28, 17]. The primary advantage of this algorithm is its robustness; unlikeother approaches, each subproblem is guaranteed to have a solution.Note that throughout this discussion, for vectors v 2 Rn, we have indi-cated subvectors by either vy or v
 . Here y is a vector of variables and so vyrefers to all components of v relating to these variables. Alternatively, wehave also used the index set 
 � f1; 2; : : : ; ng to describe a subvector v
 ofv; matrices follow the same convention.A Review of the NE/SQP MethodNE/SQP is a recent method for solving general nonlinear complementarityproblems. It is has been shown to be globally convergent and fast (Q-quadratic rate) as well as robust, in the sense that the direction-�ndingsubproblems are always solvable [28, 17].For a function G : Rn+ ! Rn, NCP(G) is to �nd an x 2 Rn such thatx � 0; G(x) � 0; and G(x)Tx = 0:The basis for the NE/SQP method is to solve NCP(G) by �rst transform-ing it into the problem of �nding the zero of a certain set of nonsmoothequations.Speci�cally, let the function H : Rn+ ! Rn be de�ned byH(x)i = min(xi; Gi(x)) i = 1; � � � ; n: (6)It is not hard to see that a zero of this function H corresponds exactly toa solution to NCP(G). Unfortunately, because of the presence of the minoperator, this function is not di�erentiable (in the sense of Fr�echet), so that8



standard algorithms such as Newton's method cannot directly be applied.However, NE/SQP is actually a nonsmooth extension of the Gauss-Newtonmethod as applied to this function H .Very much related to H is the norm function � : Rn+ ! Rn+ de�ned by�(x) = 12kH(x)k2; (7)where we take k � k to be the Euclidean norm throughout this paper. Asa result, we see that NCP(G) can be cast as the nonsmooth, nonconvexoptimization problem minimize x �(x)such that x � 0: (8)The basic scheme with NE/SQP is as follows: having an estimate xk ofthe solution, a new iterate xk+1 is generated according to the rulexk+1 = xk + �kdk;where dk is a suitable search direction and �k is the associated step lengthneeded for global convergence of the method. The calculation of the searchdirection entails the solution of a certain convex quadratic program (QP),which we will now explain.Let � : Rn+ � Rn ! Rn+ be de�ned as�(x; d) = 12kH(x) +M(x)dk2; (9)where M(x) is the n � n matrix de�ned as followsM(x) =  I�� 0r�G� r�G� ! ; (10)whereIG(x) = fi : Gi(x) < xig; Ix(x) = fi : Gi(x) > xig; Ie(x) = fi : Gi(x) = xig;� = Ix(x) [ Ie(x); � = IG(x);and I�� is the identity matrix of order �.Having the iterate xk, the associated direction-�nding convex quadraticsubproblem is of the formminimize d �(xk; d)subject to xk + d � 0: (11)9



Note that the direction d = 0 is always feasible to this QP becauseeach iterate xk is maintained nonnegative; see (8). As a result, the feasibleregion is a nonempty polyhedron. Hence, taken together with the fact thatthe objective function is a quadratic bounded below by zero, this QP willalways have a solution (by the Frank-Wolfe theorem [15]). In addition, thisis a relatively easy QP to solve because it has a convex objective functionand simple bound constraints.Two conditions are su�cient to guarantee the convergence of the NE/SQPmethod. The �rst condition is s-regularity and generalizes the idea of non-singularity.De�nition 2 A nonnegative vector x is said to be s-regular if the followinglinear inequality system has a solution in y:xi + yi = 0 i 2 I+x (x)Gi(x) +rGi(x)Ty = 0 i 2 I+G (x)xi + yi � 0 i 2 I0G(x)Gi(x) +rGi(x)Ty � 0 i 2 I0G(x)xi + yi � 0 i 2 I+e (x)Gi(x) +rGi(x)Ty � 0 i 2 I+e (x)yi = 0 i 2 I0e (x); (12)whereI+G (x) = fi : xi > Gi(x); xi > 0g I0G(x) = fi : xi > Gi(x); xi = 0gand similarly for Ie(x) and Ix(x).The second condition is b-regularity and ensures the boundedness of thesequence of search directions fdkg.De�nition 3 A nonnegative vector x is said to be b-regular if for everyindex set � with the property thatI+G (x) � � � IG(x) [ Ie(x);the principal submatrix r�G�(x) is nonsingular.The main convergence results for NE/SQP can now be summarized asfollows: 10



Theorem 2 Let G : Rn+ ! Rn be a once continuously di�erentiable func-tion, and x0 � 0 be arbitrary. Suppose that x� is an accumulation point ofan in�nite sequence of iterates fxkg generated by the NE/SQP method, andx� is both b-regular and s-regular. Then, x� solves NCP(G). Moreover, thefollowing statements hold:(a) there exists an integer K > 0 such that for all k � K, the step size�k = 1, hence, xk+1 = xk + dk;(b) the sequence fxkg converges to x� Q-superlinearly, i.e.,limk!1 kxk+1 � x�kkxk � x�k = 0;(c) if rG is Lipschitzian in a neighborhood of x�, thenlim supk!1 kxk+1 � x�kkxk � x�k2 <1:Using NE/SQP to Solve the Elastic, Nonadditive TEPIn this section, we modify the basic NE/SQP method presented above foruse with the NCP formulation of the tra�c equilibrium problem as given in(5). The essential idea is to keep a working set of paths W whose elementscan have nonzero 
ow. The associated path 
ows vector of size nW � 1 isdenoted as FW ; here nW = jW j. The remaining inactive paths have their
ow automatically set to zero and the associated indices are collected intothe set �W where j �W j = n �W . It is understood that the number of activepaths nW is generally much less than the number of total paths nP . Incombination with the nI O-D minimum times collected into the vector u,we attempt to solve the associated NCP of size nW+nI rather than the NCPwith the nP +nI complete set of variables. The collection of indices for eachof these reduced NCPs is given by S = W [ I , where jSj = nS = nW + nI .Of course the selection of which paths will be in the initial working set isimportant as well as the method for updating the set W . We discuss theseissues in more detail in what follows.A crucial point in making the path generation NE/SQP method work isto identify conditions that will allow us to conclude that we have actuallysolved the overall NCP of size n = nP + nI without enumerating all paths.We will provide a lemma that will outline these conditions, but �rst we11



need to introduce some notation that associates the functions used in theNE/SQP method with the size of the reduced NCP under consideration.We can expand the function G(�) given in (5) toGFW (FW ; F �W ; u) = CW (FW ; F �W )� �W� uGF �W (FW ; F �W ; u) = C �W (FW ; F �W )� � �W � uGu(FW ; F �W ; u) = �T�WFW + �T� �WF �W �D(u); (13)where A��; A�� denote respectively, rows and columns of the matrix A in-dexed by the sets � and �.The reduced NCP automatically sets the inactive path 
ows equal tozero (i.e., F �W = 0) and ignores the components GF �W so that we get thereduced NCP asGFW (FW ; u) = CW (FW )� �W�u FW � 0 GTFWFW = 0Gu(FW ; u) = �T�WFW �D(u) � 0 u � 0 Gu(FW ; u)Tu = 0: (14)We have made the rather weak assumption that for path p, the cost functionCp(F ) does not depend on paths with zero 
ow; that is, Cp(F ) = Cp(FW ).The related function H : Rn+ ! RnS is given asHS(xS) = min(xS ; GS) (15)where the subscript S refers to those active indices in S = W [ I withF �W = 0, for example, the vectorxS =  FWu ! :Also, we de�ne �S : Rn+ ! R+ as�S(xS) = 12kHS(xS)k2 (16)and the subproblem objective function �S : Rn+ �Rn ! R+ as�S(xS ; dS) = 12kHS(xS) +MSS(xS)dSk2; (17)where dS is conformal with xS and MSS(xS) is a principal submatrix ofM(x) with x =  xSx �S ! ; and x �S = 0: (18)12



Note that, without loss of generality, we have arranged the vector x so thatthe �rst nS components relate to xi for i 2 S. The related reduced QPsubproblem is thus of the formminimize dS �S(xkS ; dS)subject to xkS + dS � 0: (19)Lastly, let the forcing function zS : Rn+ � Rn ! R+ be de�ned aszS(x; d) = 12kMSS(xS)dSk2: (20)Note that by setting all the inactive paths to zero, without loss of generality,we can express the functions above in terms of the vector xS rather thanthe entire vector xT = (FTW uT FT�W ). We see that the functions H; �; �,and z take the n vector x as their argument of which n �W of the componentsare �xed at a value of zero. In that sense, one can think of them also astaking vectors of size nS as their arguments. The important point is thatfrom (13), including the values of F �W = 0 into the vector x or leaving themo� makes no di�erence in the value of (GFW ; Gu) and related functions.The �rst result states conditions indicating when a solution of the currentreduced NCP coincides with a solution of the overall TEP.Lemma 1 Let S = W [ I, xS 2 RnS+ and F �W = 0. Then, the vectorx 2 RnP+nI given by (18) solves the TEP if and only if(i) �S(xS) = 0, and(ii) ui is less than or equal to the length of a shortest path for O-D pair i,for all i 2 I.ProofNote �rst that the terms �S(xS) and �S(x) are equal and are used inter-changeably in what follows. The former term implicitly sets xi = 0 8i 2 �Wwhereas the latter term does the same only explicitly. A similar conventionis adopted for other functions involving x. We have the following�(x) = Pj2W[I �j(x)+Pj2 �W\(Ix[Ie) �j(x)+Pj2 �W\IG �j(x):We will �rst show that (i) and (ii) imply that x is a solution to TEP. Since�S(xS) = 0, we see that the �rst summand is zero. Also, since xj = 0 for all13



j 2 �W and �j(x) = 12x2j for all j 2 �W \ (Ix(x) [ Ie(x)), the second term isalso equal to zero. And lastly, for any path j 2 �W \ IG(x), with associatedO-D pair k, letting the matrices � = [�ap] and � = [
pi], we must haveGj(xS) = Cj �Xi2I 
jiui < 0 = xjor that path j has less cost than uk. So in light of the shortest path premise(ii), the set �W \ IG(x) must be empty. Noting that the empty sum is equalto zero, we see that (i) and (ii) imply that �(x) = 0 or that x is a solutionto NCP(G).As for the other direction, we note �rst that � is the sum of nonnegativeterms �j . Therefore, x is a solution to TEP if and only if �j(x) = 0 8j =1; 2; : : : ; n: As a result, �S(x) = Xj2W[I �j(x) = 0:It remains to show that ui is less than or equal to the length of a shortestpath for O-D pair i for each i 2 I . Assume not, then there must be a pathj serving O-D pair k such thatGj(x) = Cj �Xi2I 
jiui < 0:Clearly, j cannot be in Ix [ Ie, because if so, this would mean that Fj �Gj(x) < 0, a contradiction to the fact that path 
ows are maintained non-negative. If j 2 IG, then 0 = �j(x) = 12Gj(x)2 > 0;a contradiction. Consequently, we see that condition (ii) is satis�ed. 2The importance of this result is that we need only solve NCPs of reducedsize and check shortest path conditions to actually solve the overall NCP.This result is the main justi�cation for the path generation method. It isassumed that the shortest path calculations can be performed e�ciently onthe nI origin-destination pairs and that the reduced NCPs of size nS =nW + nI are still computationally manageable.The path generation NE/SQP approach can now be presented. The mainidea is to apply NE/SQP to the reduced NCP of order nS = nW + nI . If acorrect set of active paths W is selected, then, barring any lack of descent14



in � (due to the condition �S(xkS ; dkS) = �S(xkS) or the lack of regularity atan accumulation point), by Lemma 1, if all the variables ui represent timesless than or equal to the shortest O-D paths, solving the smaller problem issu�cient to solving the overall NCP of size nP + nI .During an intermediate step of this modi�ed NE/SQP algorithm, themethod may stall because the wrong set of active paths has been identi�ed.Stalling here means that �S(xkS) = 0, but there still exists an inactive pathp serving O-D pair k with lower cost than the current value of uk. Inparticular, then we must have Gp(xkS) < 0. As a result, a change of theindex sets W and �W is needed. Note that we have ignored the case that�S(xkS) = �S(xkS ; dkS), which could also have produced nondescent or stallingin �. Ignoring this case is reasonable because in the numerical experimentsin [28, 17], this condition was not checked yet convergence of the methodwas not hampered. Also, even if this condition were encountered during therunning of the algorithm, we could just restart at a new point.Of course, it is important to consider which path or paths should bebrought into the working set W . We discuss �rst the case of allowing justone path to enter. Since we are ultimately checking for paths that violate theshortest path conditions for u, it is reasonable to bring in such a violatingpath. That is, W  W [ fpg�W  �W � fpg;where p 2 �W is such that Gp(xkS) < 0 = F kp . We will call p a candidateentering path. At this point, there are two questions to answer. First,having selected a path p to potentially join the working set, to what levelabove zero do we raise its value? Second, if there is more than one path tochoose from, that is, jfp 2 �W : Gp(xkS) < 0gj > 1, how do we select whichviolating paths to enter? In what follows, we will answer both questions andprovide a computationally attractive approach that avoids solving the QPsubproblem when a new path is added to the working set.Suppose that we have identi�ed a path p as described above. One optionis to simply restart NE/SQP with the new set of indicesS 0 = W 0 [ IW 0 = W [ fpg�W 0 = �W � fpg:This version of the algorithm would necessarily include each candidate en-tering path, taken one at a time. The new NCP would be of size nW +1+nI15



and the current iterate of size jS0j = nS0 would bexkS0 =  xkS0 ! :The mechanics of the algorithm would work as follows. Having the orig-inal working set of paths, the value of �S would be driven to zero. If the uvariables were less than or equal to shortest path values, then by Lemma 1we would be done. Otherwise, at this iteration, which we will denote as k1,we would let the �rst new path p 2 �W enter the working set W . When thisnew path p entered, we see that�S0(xkS0) =Pj2S0 �j(xkS0)=Pj2S �j(xkS0) + �p(xkS0)= �S(xkS) + 12Gp(xkS)2> �S(xkS);so that the norm function � would necessarily increase. The algorithm wouldthen attempt to drive �S0 to zero. This pattern would be repeated a �nitenumber of times, with ki representing the iteration number at which theith new path is added to the working set. Eventually, this method wouldconverge to a solution of the overall problem, or we would use all the paths(W = P ) without converging.However, some computational savings can be gained if we made use of theinformation obtained from iteration ki in iteration ki+ 1. More speci�cally,since the purpose of the QP subproblem is to generate a descent directionfor � at the current iterate, if we can �nd such a direction without actuallysolving a new subproblem, then we will have made some computationalsavings. This is the approach we have adopted in this paper.Lemma 2 is related to avoiding solving the QP subproblem exactly.Lemma 2 Let S = W [ I with �S(xS) = 0. Then, MSS(xS)dS = 0 wheredS is an optimal subproblem solution.ProofUsing the nonnegativity of � and the optimality of dS , we conclude that�S(xS) = 0 � �S(xS ; dS) � �S(xS ; 0) = �S(xS);so that �S(xS ; dS) = �S(xS ; 0):16



This statement is equivalent toMSS(xS)dS = 0by Proposition 2 (b) [28] and the de�nition of zS(�; �). 2The relevance of this lemma with the algorithm being presented is thatat iteration ki, since a new path p is to be added, we must have�S(xS) = 0)MSSdS = 0:We will use this condition in later computations.At iteration ki, we are given the current set of indices Ski = W ki [I andthe current iterate xkiSki as well as the new counterparts Ski+1 = W ki+1 [I and xki+1Ski+1 . For notational simplicity, we will denote, respectively, thecurrent set and iterate by S = W [ I and xS and the new versions byS0 = W 0 [ I and xS0 , where W 0 = W [ fp 2 �W : Gp(xkS) < 0g. The searchdirection d, computed as a solution to the QP subproblem at iteration ki,will also follow the same notational convention.In what follows, we will present calculations that will be useful for avoid-ing a complete resolving of the QP subproblem at iteration ki. Notationally,we will take the matrixMSS(xS) and add columns and rows referring to thenew paths being added. The result is a matrix of the following form (theargument xS has been dropped for notational convenience): MSS MSNMNS MNN ! ;where N is the set of indices for the new paths being added, nN = jN j,MSS 2 RnS�nS , MSN 2 RnS�nN , MNS 2 RnN�nS , and MNN 2 RnN�nN . Itis not hard to see that when jN j > 1, the new value of � (i.e., �S0) will alsonecessarily increase and the previous logic remains valid 3. As it turns out,the quantities MSN ;MNS, and MNN are quite easy to compute and are keyin the analysis that will follow.Lemma 3 Let N denote the index set of candidate entering paths. Thenwe have the following:3Speci�cally, for S0 = S [N , we have�S0(xkS0) =Xj2S0 �j(xkS0) = �(xkS) +Xj2N 12Gj(xkS)2 > �S(xkS):17



(i) MNN = rNCN(F );(ii) MpS = [�
pi : i 2 I @Cp(F )@Fj : j 2 W ]; 8p 2 N;(iii) MSp = 264 0 2 RjIx[Iej
pj : j 2 IG \ IrpCj(F ) : j 2 IG \W 375 8p 2 N:ProofThe result follows by considering the functionG(F; u) = ( GF (F; u) = C(F )� �uGu(F; u) = �TF �D(u) ) :2 Using (i), (ii), and (iii), in the next result, we present su�cient condi-tions, easily veri�ed in practice, that will establish when the vector dTS0 =(dTS dTN) is a descent direction for �S0 at the point xTS0 = (xTS 0T ); hereS0 = S [N . The computations will entail solving a simple QP of size nNrather than one of size nS0 . This is meaningful because generally nN will bemuch smaller than nS0 .Theorem 3 Let S = W [ I with �S(xS) = 0 and N � fp 2 �W : Gp(xS) <0g; N 6= ;. Also, de�ne S 0 = W 0 [ I, where W 0 = W [N andA = (MTSNMSN +MTNNMNN);b = [GN(xS0) + (MNSdS)]TMNN ;c = GN(xS0)T (MNSdS) + 12kMNSdSk2; (21)with q(dN) = 12dTNAdN + bTdN + c: (22)Then, with dS an optimal search direction, there exists �dN 2 RnN such thatdS0 =  dS�dN !18



is a descent direction for �S0 at xS0 if and only if q(d�N) < 0 where d�N solvesminimize dN q(dN) : dN � 0: (23)ProofBy Lemma 2 (b) [28], a su�cient descent condition for � is that for somevector dS0 �S0(xS0 ; dS0) < �S0(xS0 ; 0): (24)We note that with the new index set S 0, and xTS0 = (xTS 0), we haveHS0(xS0) =  0GN (xS) !by considering (15), because HS(xS) = 0 , �S(xS) = 0 and becauseGp(xS0) = Gp(xS) < 0 = Fp 8p 2 N . Writing out (24) gives the follow-ing equivalent form:12 




 0GN(xS0) !+  MSS MSNMNS MNN ! dSdp !




2 < 12 




 0Gp(xS0) !




2 :Using the fact that �S(xS0) = �S(xS) = 0, then by Lemma 2 we haveMSSdS = 0. After rearranging terms we getq(dN) = 12dTNAdN + bTdN + c < 0where A; b, and c are de�ned as in (21). It is not hard to see that q : RnN !R is a convex quadratic function and also that there exists a �dN � 0 suchthat q( �dN) < 0 if and only if q(d�N) < 0 where d�N solves (23). 2The above theorem speci�es when a descent direction for �S0 can beobtained from a previous search direction dS and a relatively small newvector �dN .We note that the quadratic program given in (23) always has a solution.To see this we �rst write out the associated KKT optimality conditions.These conditions are to �nd a dN such thatAdN + b � 0 dN � 0 (AdN + b)TdN = 0: (25)These conditions constitute a linear complementarity problem (LCP) withdata (A; b). We will make the weak assumption that @Cp@Fp > 0 for all pathsp. Then, since A is the sum of two matrices with nonnegative entries one of19



which has positive diagonals (i.e., MTNNMNN ), by Theorem 3.8.15 in [9], Ais a Q-matrix for which the LCP above has a solution for all possible b.It should be clear that great computational savings may be achievedby computing a search direction in the manner described above, essentiallyavoiding solving the QP subproblem of size nS0 .The complete algorithm for the modi�ed NE/SQP method can now besummarized as follows:Step 0: InitializationSelect parameters �; � 2 (0; 1), and set k = 0. Arbitrarily select nW ; F 0W 2RnW+ and u0 2 RnI such that the network is strongly connected given W .Set x0S =  F 0Wu0 ! :Compute W 0 and S0.Step 1: Generate Search DirectionHaving the sets W (= W k); �W(= �W k); S(= Sk), and the vector xS , solvethe QP (19) with solution dS .Step 2: UpdateCase 1: (No Change in Working Set of Paths, Descent in �)If an optimal direction dkS satis�es�S(xkS ; dkS) < �S(xkS);then do the following:(a) perform a standard Armijo-type backtracking to obtain a steplength �k;(b) xk+1S  xkS + �kdkS ;(c) W k+1  W k, �W k+1  �W k , Sk+1  Sk;(d) k  k + 1;(e) go to Step 3. 20



Case 2: (No Change in Working Set of Paths, No Descent in �)If the optimal direction dkS satis�es�S(xkS ; dkS) = �S(xkS) > 0;then STOP. If uki is less than or equal to the length of a shortest pathfor all i 2 I and  xkS0 !is s-regular, then x solves the overall NCP. Otherwise, terminate thealgorithm.Case 3: (Reduced NCP Solved and No Shortest Path Violations)If the optimal direction dkS satis�es�S(xkS ; dkS) = �S(xkS) = 0;and uki is less than or equal to a shortest path for all i 2 I , then STOP.The vector x =  xkS0 !is a solution to the overall NCP.Case 4: (Reduced NCP Solved but Shortest Path Violations Exist|New Paths Enter )If the optimal direction dkS satis�es�S(xkS ; dkS) = �S(xkS) = 0and 9 N � �W , such that Gp(xkS) < 0 for all p 2 N , then do thefollowing for N � fp 2 �W : Gp(xkS) < 0g and N nonempty,(a) let W 0  W [N , �W 0  �W �N ;S0 S [N ;(b) xS0   xkS0 ! ;(c) W  W 0; �W  �W 0; S  S 0;(d) go to Step 1. 21



Step 3: Termination CheckIf � does not satisfy a prescribed termination rule then go to Step 1. Other-wise, if 9 p 2 �W with Gp(xkS) < 0, then go to Case 4 of Step 2. Else, STOP.The vector x =  xkS0 !is a solution to the overall NCP.As can be seen from the algorithm statement, the method solves a se-quence of quadratic program subproblems to force descent in �S , where Srepresents the current active indices. As long as strict descent is achieved,the algorithm functions essentially as the NE/SQP method. However, ifstalling occurs, that is �S(xkS ; dkS) = �S(xkS) = 0;we need to deviate from the NE/SQP approach. Speci�cally, if stallingis present and the u variables represent shortest paths, we have found asolution as outlined by Lemma 1. Otherwise, if stalling is present, we willhave identi�ed at least one violating path p and can let it enter the setW . Of course, when this happens, we could avoid resolving the new QP(Step 1) for the set S 0 = S [ fpg by generating a descent direction as asolution to a QP of size jN j << jS 0j via the results in Theorem 3. Lastly, ifcase 2's condition is encountered, we know by Proposition 1 in [28] that ifxT = ((xkS)T 0T ) is s-regular with u's representing shortest paths, this x isa solution to the overall NCP.We now present the main convergence result concerning this method.Theorem 4 Let fxkg be an in�nite sequence of iterates generated by thepath generation NE/SQP method with F kp = 0 8p 2 �W k 8k. Then, if x� isan accumulation point of fxkg, with x� both b- and s-regular, x� solves theNCP (13).ProofFrom the NE/SQP algorithm and the description of the path generationapproach above, we see that either we increase the cardinality of W k ateach iteration or we stop because the conditions (i) and (ii) of Lemma 1have been satis�ed. In the latter case, we will have solved NCP(G) so weconsider the other possibility. Since the number of paths is �nite, we seethat eventually, W k = P and we will be solving the overall NCP for whichconvergence is guaranteed by the NE/SQP method. 222



4 Numerical ExamplesTo provide concrete evidence of the importance of including nonadditivitiesand the potential viability of solving nonadditive problems, we now presentsome illustrative numerical examples. For these examples, unless otherwisespeci�ed, we have selected a starting point by solving nI shortest path prob-lems, one for each O-D pair. This method identi�es W 0 = fshortest pathsg so that jW 0j = nI . The initial path 
ows are all set equal to 125.0 4, thearc 
ows f are calculated via f = �F , and the starting value for each ui,i 2 I is the value of the shortest path for that O-D pair.The NetworkThe network used for these examples is shown in Figure 1. This networkhas 9 nodes, 28 arcs and a large number of paths connecting any two nodes.The travel time on each link is given by a so-called Bureau of Public Roads(BPR) function with the formta(fa) = Aa +Ba � faKa�4 ; (26)where Aa denotes the free-
ow travel time in minutes on arc a, Ka denotesthe practical capacity of arc a in hundreds of vehicles, and Ba is the con-gestion parameter for arc a. The value of the parameters for each arc areshown in Table 1.An Example with Separable Demand FunctionsThere are 72 origin-destination pairs in this example, and a logit functionwas used to model the O-D demand. This demand function can be thoughtof as representing the number of people that choose to drive rather thantake transit given the cost of the two competing modes. Speci�cally, thedemand functions had the formDi(ui) = Qi 11 + e(��i+!iui) (27)where Qi can be interpreted as the total demand across all modes for O-Di, �i can be interpreted as the di�erence in the attractiveness of the twomodes connecting i, and !i is a sensitivity parameter for i. The speci�c4For the nonlinear case with tolls we used a starting point of 0.0 instead.23
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Figure 2: Path CostsWe solved this problem two times, once with no tolls and once with$3.00 tolls on links 2, 10, 12, and 20. The solution with no tolls is shownin Tables 3, 4, and 5, which contain the equilibrium arc 
ows/costs, O-Ddemands/
ows, and path 
ows/costs (on the used paths), respectively. Twofactors need to be checked to demonstrate that this is an equilibrium. First,the actual amount of 
ow betwen every O-D pair must equal the demandfor that O-D pair given the path costs; this is easily seen to be true in Table4. Second, the cost on all used paths connecting a particular O-D pair mustbe equal and not greater than the cost on any unused paths; the fact that allused paths have equal cost can easily be seen in Table 5. That these costsexceeded the cost on all unused paths is somewhat more di�cult to verify,but is in fact the case. A total of 113 paths was generated, though only the85 paths with positive 
ow are shown.The results with tolls are shown in Tables 6, 7, and 8. In this case thetotal number of paths generated increases to 116, and the total number ofused paths falls to 83. Not surprisingly, the 
ow on the tolled arcs (2, 10, 12,25



and 20) decreases as a result of the toll, as does the 
ow on the paths thatuse these arcs (e.g., 1-4, 1-4-7, 2-1-4, and 2-1-4-7 for arc 2, which has a tailnode of 1 and a head node of 4). Of the remaining 24 arcs, the 
ow decreaseson 10 and increases on 14. As can be seen from looking at Tables 4 and 7,these changes in arc 
ows are primarily a result of changes in path 
ows,since the total demands remain relatively constant. The only exception isthe O-D pairs that are \directly" a�ected by the tolls (e.g., 1-4, 1-7, and4-7).The Impact of Nonadditive Cost FunctionsTo illustrate the impact of using nonadditive cost functions, we took theabove example one step further and solved for an equilibrium both withand without the toll assuming additive costs. Speci�cally, we identi�ed alinear value of time function (namely, $5.50 per half hour) that would yieldresults similar to the nonadditive model when there were no tolls. We thencompared the predictions that would be made by the two models in thepresence of tolls.The results for the nonadditive and additive cases when there are notolls are given in Table 9. As can be seen the solutions are quite similar; thelargest di�erence in arcs 
ows is only 6%.In the presence of tolls one would expect the two models to make verydi�erent predictions. In particular, for \shorter" paths one would expectthe additive/linear model to predict smaller changes due to tolls, and for\longer" trips one would expect the additive/linear model to predict largerchanges. The di�erence is because for the additive model, the toll is asmaller portion of the total path cost for short trips (as compared with thenonadditive/nonlinear model) and a larger portion of the total path cost forlong trips (again as opposed to the nonadditive/nonlinear model).The results of the two models in the presence of tolls are given in Table10. As expected, the results of the two models are quite di�erent. As shownin Table 11, the \short" paths 1-4, 1-4-7, and 2-1-4 have fairly similar 
owsin both the additive and nonadditive case, while the \long" path 2-1-4-7has very di�erent 
ows in the two cases. (Of course, when making suchcomparisons it is important to recall that equilibrium path 
ows are notunique.)The implications can be quite important from a policy perspective. Inparticular, a toll designed to reduce congestion would have a much smallerimpact than would be predicted by using an additive model with a linear26



value of time function.An Asymmetric ExampleWe now present an example to illustrate that this method can also be appliedto problems with asymmetric demand functions (note that the path costfunctions above are already asymmetric even though the arc cost functionsare separable).In particular, we assume that while the total demand from each ori-gin is known, the proportion of that demand bound for each destination isunknown. We use an exponential gravity model of the formDij = 125:0 e�0:1uijPk2N e�0:1uik ; (29)where (with a slight abuse of notation) Dij is the demand for O-D pair ijand uij is the (minimum) O-D travel cost.The solution for this problem is shown in Tables 12, 13, and 14. Thissolution is clearly an equilibrium.Not surprisingly, O-D pairs that are relatively far apart (e.g., 1-9, 1-6)have signi�cantly lower demand than those that are closer together (e.g.,1-2 and 1-4). Also not surprisingly, those paths with high cost (e.g., 1-5-8-9,3-5-4-7) have relatively low 
ow whereas those with low cost (e.g., 1-2, 9-6)have relatively high 
ow.Perhaps the most interesting result from this example is that while 108paths were generated, only 76 are used in the equilibrium solution. Indeed,we were consistently able to �nd solutions in which a single path was usedfor many O-D pairs and at most two or three were used for all O-D pairs.We found this to be quite surprising because we expected to be able to �ndequilibria in which only �ve or more paths were used for most O-D pairs.The result suggests that path enumeration may not be such a tedious taskafter all.5 Conclusions and Future WorkWe have demonstrated two points in this paper. First, using both qualitativearguments and numerical examples, we have shown that many of today's im-portant transportation policy questions cannot be answered using existingmodels that employ additive path cost functions. Second, we have shown27



that algorithms for solving large-scale, elastic, nonadditive tra�c equilib-rium problems probably can be developed. Several important tasks remainto be completed before the ideas presented here can be applied, however.First, it will be necessary to formulate and estimate realistic path cost/utilityfunctions. Clearly, a considerable amount of research has already been doneon such factors as value of time functions, fuel consumption functions, ve-hicle operating cost functions, and travel disutility functions. However,the task of incorporating all of this research into a 
exible, uni�ed pathcost/utility function still remains.Second, work needs to be done to ensure that either the NE/SQP methodor other methods can be used to solve large-scale problems. This will, at aminimum, involve developing methods for e�ciently storing and manipulat-ing path variables, calculating shortest paths when the costs are nonadditive.It would also be informative to see a comparison of di�erent algorithms, sincetheir performance on nonadditive problems is likely to be quite di�erentfrom that on additive problems. For example, we have already learned thatdiagonalization methods do not work very well on nonadditive problems, ap-parently because the diagonalized subproblems are very bad approximationsof the true problem.In addition, it is important to consider how the ideas developed here canbe applied to other path-based network equilibrium problems. For example,the simultaneous route and departure-time equilibrium problem [16] is mosteasily formulated using path variables. As another example, researchers havestruggled with including entropy terms in TEP [6] because they include pathvariables. The ideas developed here should both facilitate the solution ofthose problems and allow them to be expanded to include nonadditive costs.AppendixA A Special Case of Nonadditive Path Cost Func-tionsAs mentioned in the introduction, while it is quite common to assume thatpath costs are an additive function of link costs, there are many situationsin which this assumption does not hold. In most such cases it is necessaryto use a path formulation of TEP. However, there is one class of nonaddi-tive path costs for which this is not necessary. In particular, suppose thatCp(F ) = g [Pa2A �apca(�F )] for all p 2 P , where g : R+ ! R+ is mono-28



tone increasing. Then, it turns out that one can �nd an equilibrium for thenonadditive problem by solving an appropriate additive problem.This result may be somewhat surprising because it is not true of com-plementarity problems in general. In other words, given G : Rn+ ! Rn andx 2 Rn+ such that Gi(x) � 0 i = 1; : : : ; n (30)Gi(x)xi = 0 i = 1; : : : ; n; (31)it is not, in general, the case thatg[Gi(x)]xi = 0 i = 1; : : : ; n; (32)even when g is monotone increasing. For example, suppose that xj > 0 forsome j 2 f1; : : : ; ng. Then it must be the case that Gj(x) = 0. However,this does not imply that g[Gj(x)] � g(0) = 0.As it turns out, the TEP is not an ordinary complementarity problem.To see this, �rst consider the inelastic version of the TEP where ui(F ) =minp2Pi Cp(F ). For this problem we can demonstrate the following:Theorem 5 Suppose F 2 RnP+ satis�es the conditions thatFp > 0)Xa2A �apca(�F ) = minp2Pi(Xa2A �apca(�F )) (33)for all i 2 I and p 2 Pi. Then, it follows thatFp > 0) Cp(F ) = ui(F ) (34)for all i 2 I and p 2 Pi.ProofWe know thatFp > 0 ) Xa2A �apca(�F ) = minp2Pi(Xa2A �apca(�F )) (35)) g "Xa2A �apca(�F )# = g "minp2Pi (Xa2A �apca(�F ))# : (36)29



And, since g is monotone increasing, it follows thatFp > 0) g "Xa2A �apca(�F )# = minp2Pi (g "Xa2A �apca(�F )#) : (37)Finally, since g [Pa2A �apca(�F )] � Cp(F ) and minp2Pi fg [Pa2A �apca(�F )]g �minp2PifCp(F )g � ui(F ), the result follows. 2The implication of this result is that we can ignore the transformation g andsolve an equlibrium problem with simple additive costs, since the feasibleregions for the two problems are identical. That is, if we let ~Cp(F ) =Pa2A �apca(�F ) for all p 2 P and �nd an equilibrium for ~C it will also bean equilibrium for C.When demand is elastic (and the inverse demand function exists), asimilar result holds. In particular we have the following theorem.Theorem 6 Suppose g is invertible and F 2 RnP+ satis�es the conditionsthatFp > 0)Xa2A �apca(�F ) = minp2Pi (Xa2A �apca(�F )) i 2 I; p 2 Pi (38)g�1[D�1i (F )] = minp2Pi(Xa2A �apca(�F )) i 2 I: (39)Then Fp > 0) Cp(F ) = ui(F ) i 2 I; p 2 Pi; (40)and D�1i (F ) = ui(F ): (41)ProofWe know from Theorem 5 that (40) holds whenever (38) holds. Hence, allthat remains is to show that (41) follows from (39). To do so, we observethat g�1[D�1i (F )] = minp2Pi fPa2A �apca(�F )g) g �g�1[D�1i (F )]� = g (minp2Pi fPa2A �apca(�F )g)) D�1i (F ) = g (minp2Pi fPa2A �apca(�F )g) : (42)30



Now, since g is monotone increasing, it follows thatg minp2Pi(Xa2A �apca(�F ))! = minp2Pi(g Xa2A �apca(�F )!) (43)= minp2PiCp(F ) (44)= ui(F ) (45)and hence that D�1i (F ) = ui(F ) 2.Thus, when the demand is elastic, one can obtain a solution to a TEP withnonadditive path costs by solving a simple additive problem with trans-formed demand. In other words, if F is an equilibrium for ( ~C; g�1[D�1]), itis also an equilibrium for (C;D�1).Unfortunately, these results do not hold in general. Most important,when Cp(F ) = gp [Pa2A �apca(�F )] for all p 2 P (i.e., when the transfor-mation is path speci�c), it does not seem possible to obtain an equilibriumby solving an \appropriate" additive problem. Hence, for such cases it isnecessary to use a path formulation 5.Remark:It is interesting to note that we can generalize g and still get the sameresults as shown above. The key idea is that the functions g and min shouldcommute. The result below describes necessary and su�cient conditions onthe function g to make this true.Proposition 1 Let g : D � R ! R, and suppose that xmin := minx2Dxand g� = minx2Dg(x) are well de�ned. Theng(xmin) = g�, xmin 2 argmin fg(x) : x 2 Dg:ProofFor all x 2 D, we have g(x) � minx2Dg(x). If g(xmin) = g� ) g(x) �g(xmin) as desired. In the other direction, if g(xmin) � g(x) for all x 2 D,this gives g(xmin) � g� � g(x) 8x 2 D:5The nonadditive formulation that we have employed uses gp = g for all paths p butadds tolls. Selectively including or excluding tolled links (if the number of tolled linksis small) allows all shortest-path calculations to be performed in a conventional mannerdespite the nonadditive costs. 31
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Arc (a) Tail Node Head Node Aa (min.) Ba Ka (100's)1 1 2 5.00 10.00 60.002 1 4 5.00 10.00 60.003 1 5 3.00 15.00 60.004 2 1 5.00 10.00 60.005 2 3 5.00 10.00 60.006 2 5 3.00 15.00 60.007 3 2 5.00 10.00 60.008 3 5 3.00 15.00 60.009 3 6 5.00 10.00 60.0010 4 1 5.00 10.00 60.0011 4 5 3.00 15.00 60.0012 4 7 5.00 10.00 60.0013 5 2 3.00 15.00 60.0014 5 4 3.00 15.00 60.0015 5 6 3.00 15.00 60.0016 5 8 3.00 15.00 60.0017 6 3 5.00 10.00 60.0018 6 5 3.00 15.00 60.0019 6 9 5.00 10.00 60.0020 7 4 5.00 10.00 60.0021 7 5 3.00 15.00 60.0022 7 8 5.00 10.00 60.0023 8 5 3.00 15.00 60.0024 8 7 5.00 10.00 60.0025 8 9 5.00 10.00 60.0026 9 5 3.00 15.00 60.0027 9 6 5.00 10.00 60.0028 9 8 5.00 10.00 60.00Table 1: BPR Function Parameters36



Origin Destination Qi (100's) �i !i Origin Destination Qi (100's) �i !i1 2 25.0 0.15 0.8500 5 6 25.0 0.15 0.79801 3 25.0 0.15 1.8000 5 7 25.0 0.15 1.70801 4 25.0 0.15 0.8500 5 8 25.0 0.15 0.79801 5 25.0 0.15 0.7980 5 9 25.0 0.15 1.70801 6 25.0 0.15 1.6320 6 1 25.0 0.15 2.60201 7 25.0 0.15 1.8000 6 2 25.0 0.15 1.63201 8 25.0 0.15 1.6320 6 3 25.0 0.15 0.85001 9 25.0 0.15 2.7180 6 4 25.0 0.15 1.63202 1 25.0 0.15 0.8500 6 5 25.0 0.15 0.79802 3 25.0 0.15 0.8500 6 7 25.0 0.15 2.60202 4 25.0 0.15 1.6320 6 8 25.0 0.15 1.63202 5 25.0 0.15 0.7980 6 9 25.0 0.15 0.85002 6 25.0 0.15 1.6320 7 1 25.0 0.15 1.80002 7 25.0 0.15 2.6020 7 2 25.0 0.15 1.63202 8 25.0 0.15 1.6320 7 3 25.0 0.15 2.60202 9 25.0 0.15 2.6020 7 4 25.0 0.15 0.85003 1 25.0 0.15 1.8000 7 5 25.0 0.15 0.79803 2 25.0 0.15 0.8500 7 6 25.0 0.15 1.63203 4 25.0 0.15 1.6320 7 8 25.0 0.15 0.85003 5 25.0 0.15 0.7980 7 9 25.0 0.15 1.80003 6 25.0 0.15 0.8500 8 1 25.0 0.15 2.60203 7 25.0 0.15 2.6020 8 2 25.0 0.15 1.63203 8 25.0 0.15 1.6320 8 3 25.0 0.15 2.60203 9 25.0 0.15 1.8000 8 4 25.0 0.15 1.63204 1 25.0 0.15 0.8500 8 5 25.0 0.15 0.79804 2 25.0 0.15 1.6320 8 6 25.0 0.15 1.63204 3 25.0 0.15 2.6020 8 7 25.0 0.15 0.85004 5 25.0 0.15 0.7980 8 9 25.0 0.15 0.85004 6 25.0 0.15 1.6320 9 1 25.0 0.15 2.60204 7 25.0 0.15 0.8500 9 2 25.0 0.15 1.63204 8 25.0 0.15 1.6320 9 3 25.0 0.15 1.80004 9 25.0 0.15 2.6020 9 4 25.0 0.15 1.63205 1 25.0 0.15 1.7080 9 5 25.0 0.15 0.79805 2 25.0 0.15 0.7980 9 6 25.0 0.15 0.85005 3 25.0 0.15 1.7080 9 7 25.0 0.15 1.80005 4 25.0 0.15 0.7980 9 8 25.0 0.15 0.8500Table 2: Logit Demand Function Parameters37



Arc Tail Node Head Node Travel Time (min.) Arc Flow (100's)1 1 2 13.78 58.092 1 4 13.78 58.093 1 5 11.56 52.154 2 1 28.61 74.385 2 3 28.65 74.416 2 5 4.93 35.927 3 2 13.81 58.138 3 5 11.35 51.839 3 6 13.79 58.1010 4 1 28.61 74.3811 4 5 4.93 35.9212 4 7 28.65 74.4113 5 2 37.47 73.8714 5 4 37.47 73.8715 5 6 37.51 73.9016 5 8 37.51 73.9017 6 3 28.60 74.3718 6 5 4.94 36.0019 6 9 28.70 74.4420 7 4 13.81 58.1321 7 5 11.35 51.8322 7 8 13.79 58.1023 8 5 4.94 36.0024 8 7 28.60 74.3725 8 9 28.70 74.4426 9 5 11.36 51.8527 9 6 13.76 58.0528 9 8 13.76 58.05Table 3: Arc Flows with No Tolls38



O D Flow (100's) Demand (100's)1 2 16.63 16.631 3 16.64 16.641 4 16.63 16.631 5 16.56 16.561 6 13.64 13.641 7 16.64 16.641 8 13.64 13.641 9 8.32 8.322 1 14.35 14.352 3 14.34 14.342 4 15.69 15.692 5 17.04 17.042 6 15.67 15.672 7 10.78 10.782 8 15.67 15.672 9 10.74 10.743 1 16.64 16.643 2 16.62 16.623 4 13.72 13.723 5 16.58 16.583 6 16.63 16.633 7 7.82 7.823 8 13.71 13.713 9 16.62 16.624 1 14.35 14.354 2 15.69 15.694 3 10.78 10.784 5 17.04 17.044 6 15.67 15.674 7 14.34 14.344 8 15.67 15.674 9 10.74 10.745 1 7.72 7.725 2 11.93 11.935 3 7.71 7.715 4 11.93 11.93

O D Flow (100's) Demand (100's)5 6 11.92 11.925 7 7.71 7.715 8 11.92 11.925 9 7.67 7.676 1 10.79 10.796 2 15.68 15.686 3 14.35 14.356 4 15.68 15.686 5 17.04 17.046 7 10.77 10.776 8 15.67 15.676 9 14.33 14.337 1 16.64 16.647 2 13.72 13.727 3 7.82 7.827 4 16.62 16.627 5 16.58 16.587 6 13.71 13.717 8 16.63 16.637 9 16.62 16.628 1 10.79 10.798 2 15.68 15.688 3 10.77 10.778 4 15.68 15.688 5 17.04 17.048 6 15.67 15.678 7 14.35 14.358 9 14.33 14.339 1 7.84 7.849 2 13.72 13.729 3 16.65 16.659 4 13.72 13.729 5 16.57 16.579 6 16.63 16.639 7 16.65 16.659 8 16.63 16.63Table 4: O-D Demands with No Tolls39



Path Flow (100's) Cost ($)1-2 16.63 1.091-2-3 16.64 7.421-4 16.63 1.091-5 16.56 0.831-5-6 13.64 9.661-4-7 16.64 7.421-5-8 13.64 9.661-5-6-9 0.33 22.761-5-8-9 8.00 22.762-1 14.35 3.682-3 14.34 3.692-5-4 1.62 7.402-1-4 14.07 7.402-5 17.04 0.252-5-6 1.56 7.422-3-6 14.12 7.422-5-4-7 0.03 19.192-1-4-7 10.75 19.192-5-8 15.67 7.422-3-6-9 10.74 19.243-2-1 16.64 7.413-2 16.62 1.103-5-4 13.72 9.573-5 16.58 0.813-6 16.63 1.093-5-4-7 4.87 22.593-5-8-7 2.96 22.593-5-8 13.71 9.593-6-9 16.62 7.434-1 14.35 3.684-1-2 15.69 7.404-1-2-3 9.14 19.194-5-6-3 1.64 19.194-5 17.04 0.254-5-6 15.67 7.424-7 14.34 3.694-5-8 1.56 7.424-7-8 14.12 7.424-7-8-9 10.74 19.245-4-1 7.72 16.765-2 11.93 5.935-6-3 7.71 16.785-4 11.93 5.93

Path Flow (100's) Cost ($)5-6 11.92 5.945-4-7 1.26 16.785-8-7 6.45 16.785-8 11.92 5.945-6-9 7.67 16.826-3-2-1 10.73 19.186-5-4-1 0.06 19.186-5-2 1.55 7.416-3-2 14.14 7.416-3 14.35 3.686-5-4 15.68 7.416-5 17.04 0.256-5-4-7 1.68 19.206-9-8-7 9.09 19.206-9-8 15.67 7.426-9 14.33 3.707-4-1 16.64 7.417-5-2 13.72 9.577-5-2-3 7.82 22.597-4 16.62 1.107-5 16.58 0.817-5-6 13.71 9.597-8 16.63 1.097-8-9 16.62 7.438-7-4-1 10.79 19.188-5-2 15.68 7.418-5-2-3 1.62 19.208-9-6-3 9.15 19.208-5-4 1.60 7.418-7-4 14.08 7.418-5 17.04 0.258-5-6 0.06 7.428-9-6 15.61 7.428-7 14.35 3.688-9 14.33 3.709-5-2-1 7.84 22.579-5-2 13.72 9.589-6-3 16.65 7.399-5-4 13.72 9.589-5 16.57 0.819-6 16.63 1.099-8-7 16.65 7.399-8 16.63 1.09Table 5: Path Flows with No Tolls40



Arc Tail Node Head Node Travel Time (min.) Arc Flow (100's)1 1 2 13.61 57.792 1 4 8.86 47.303 1 5 11.16 51.534 2 1 27.08 73.145 2 3 28.35 74.176 2 5 5.89 39.757 3 2 14.07 58.568 3 5 10.89 51.109 3 6 14.18 58.7310 4 1 20.47 66.9211 4 5 5.31 37.6012 4 7 20.50 66.9513 5 2 38.95 74.6514 5 4 39.87 75.1315 5 6 37.73 74.0116 5 8 38.99 74.6717 6 3 29.57 75.1218 6 5 4.69 34.7719 6 9 29.68 75.2020 7 4 8.87 47.3221 7 5 10.96 51.2122 7 8 13.62 57.8123 8 5 5.89 39.7424 8 7 27.08 73.1425 8 9 28.42 74.2226 9 5 10.90 51.1127 9 6 14.19 58.7428 9 8 14.00 58.44Table 6: Arc Flows with Tolls41



O D Flow (100's) Demand (100's)1 2 16.65 16.651 3 16.76 16.761 4 14.46 14.461 5 16.59 16.591 6 13.70 13.701 7 14.50 14.501 8 13.27 13.271 9 7.96 7.962 1 14.65 14.652 3 14.40 14.402 4 14.71 14.712 5 16.99 16.992 6 15.65 15.652 7 11.42 11.422 8 14.97 14.972 9 10.24 10.243 1 16.97 16.973 2 16.60 16.603 4 13.06 13.063 5 16.62 16.623 6 16.59 16.593 7 8.05 8.053 8 13.37 13.373 9 16.25 16.254 1 13.05 13.054 2 15.15 15.154 3 11.82 11.824 5 17.02 17.024 6 15.51 15.514 7 13.05 13.054 8 15.14 15.144 9 11.77 11.775 1 7.74 7.745 2 11.53 11.535 3 7.26 7.265 4 11.28 11.28

O D Flow (100's) Demand (100's)5 6 11.86 11.865 7 7.73 7.735 8 11.52 11.525 9 7.22 7.226 1 10.93 10.936 2 15.33 15.336 3 14.15 14.156 4 15.06 15.066 5 17.05 17.056 7 10.92 10.926 8 15.32 15.326 9 14.12 14.127 1 14.50 14.507 2 13.35 13.357 3 7.48 7.487 4 14.46 14.467 5 16.61 16.617 6 13.77 13.777 8 16.64 16.647 9 16.74 16.748 1 11.43 11.438 2 14.98 14.988 3 10.25 10.258 4 14.70 14.708 5 16.99 16.998 6 15.63 15.638 7 14.65 14.658 9 14.39 14.399 1 8.06 8.069 2 13.38 13.389 3 16.28 16.289 4 13.06 13.069 5 16.62 16.629 6 16.58 16.589 7 16.98 16.989 8 16.60 16.60Table 7: O-D Flows with Tolls42



Path Flow (100's) Cost ($)1-2 16.65 1.071-2-3 16.76 7.271-4 14.46 3.561-5 16.59 0.791-5-6 13.70 9.601-4-7 14.50 9.851-5-8 13.27 10.051-5-6-9 2.51 23.191-5-8-9 5.45 23.192-1 14.65 3.352-3 14.40 3.622-5-4 7.79 8.512-1-4 6.92 8.502-5 16.99 0.312-3-6 15.65 7.452-1-4-7 11.42 18.502-5-8 14.97 8.212-3-6-9 10.24 19.793-2-1 16.97 7.023-2 16.60 1.133-5-4 13.06 10.283-5 16.62 0.763-6 16.59 1.143-5-8-7 4.50 22.313-5-4-7 3.56 22.313-5-8 13.37 9.963-6-9 16.25 7.874-1 13.05 5.084-5-2 2.59 8.014-1-2 12.56 8.014-1-2-3 11.82 18.074-5 17.02 0.274-5-6 15.51 7.614-7 13.05 5.084-5-8 2.49 8.024-7-8 12.66 8.024-7-8-9 11.77 18.125-2-1 7.74 16.745-2 11.53 6.365-6-3 7.26 17.345-4 11.28 6.63

Path Flow (100's) Cost ($)5-6 11.86 6.005-8-7 7.73 16.755-8 11.52 6.375-6-9 7.22 17.396-5-2-1 0.93 19.036-3-2-1 10.00 19.036-5-2 0.34 7.806-3-2 15.00 7.806-3 14.15 3.906-5-4 15.06 8.116-5 17.05 0.236-5-8-7 1.38 19.056-9-8-7 9.53 19.056-9-8 15.32 7.826-9 14.12 3.937-4-1 14.50 9.857-5-2 13.35 9.977-5-2-3 5.29 23.027-5-6-3 2.18 23.027-4 14.46 3.567-5 16.61 0.777-5-6 13.77 9.537-8 16.64 1.077-8-9 16.74 7.298-7-4-1 11.43 18.498-5-2 14.98 8.208-9-6-3 10.25 19.778-5-4 7.77 8.518-7-4 6.93 8.518-5 16.99 0.318-9-6 15.63 7.478-7 14.65 3.358-9 14.39 3.649-5-2-1 4.52 22.299-5-4-1 3.55 22.299-5-2 13.38 9.949-6-3 16.28 7.849-5-4 13.06 10.299-5 16.62 0.769-6 16.58 1.149-8-7 16.98 6.999-8 16.60 1.12Table 8: Path Flows with Tolls43



Linear Value of Time Nonlinear Value of TimeArc ta (min.) fa (100's) ta (min.) fa (100's) Di�. in Flow (%)1 13.30 57.28 13.78 58.09 -0.012 13.30 57.28 13.78 58.09 -0.013 13.20 54.48 11.56 52.15 0.044 35.31 79.17 28.61 74.38 0.065 35.40 79.23 28.65 74.41 0.066 4.75 35.06 4.93 35.92 -0.027 13.34 57.35 13.81 58.13 -0.018 12.87 54.04 11.35 51.83 0.049 13.32 57.31 13.79 58.10 -0.0110 35.31 79.17 28.61 74.38 0.0611 4.75 35.06 4.93 35.92 -0.0212 35.40 79.23 28.65 74.41 0.0613 43.86 77.08 37.47 73.87 0.0414 43.86 77.08 37.47 73.87 0.0415 43.97 77.14 37.51 73.90 0.0416 43.97 77.14 37.51 73.90 0.0417 35.29 79.15 28.60 74.37 0.0618 4.77 35.17 4.94 36.00 -0.0219 35.47 79.27 28.70 74.44 0.0620 13.34 57.34 13.81 58.13 -0.0121 12.87 54.04 11.35 51.83 0.0422 13.32 57.31 13.79 58.10 -0.0123 4.77 35.18 4.94 36.00 -0.0224 35.29 79.15 28.60 74.37 0.0625 35.47 79.27 28.70 74.44 0.0626 12.89 54.06 11.36 51.85 0.0427 13.27 57.22 13.76 58.05 -0.0128 13.27 57.22 13.76 58.05 -0.01Table 9: Comparison of Arc Flows for the Additive and Nonadditive Casesin the Absence of Tolls 44



Linear Value of Time Nonlinear Value of TimeArc ta (min.) fa (100's) ta (min.) fa (100's) Di�. in Flow (%)1 14.55 59.32 13.61 57.79 0.032 6.42 36.80 8.86 47.30 -0.293 12.39 53.37 11.16 51.53 0.034 31.71 76.70 27.08 73.14 0.055 33.80 78.16 28.35 74.17 0.056 8.38 46.43 5.89 39.75 0.147 14.30 58.93 14.07 58.56 0.018 12.11 52.97 10.89 51.10 0.049 13.97 58.39 14.18 58.73 -0.0110 18.44 64.60 20.47 66.92 -0.0411 4.06 30.96 5.31 37.60 -0.2112 18.47 64.64 20.50 66.95 -0.0413 49.20 79.49 38.95 74.65 0.0614 46.11 78.12 39.87 75.13 0.0415 44.52 77.39 37.73 74.01 0.0416 49.28 79.52 38.99 74.67 0.0617 38.47 81.15 29.57 75.12 0.0718 4.03 30.71 4.69 34.77 -0.1319 38.74 81.32 29.68 75.20 0.0820 6.43 36.89 8.87 47.32 -0.2821 12.08 52.92 10.96 51.21 0.0322 14.52 59.26 13.62 57.81 0.0223 8.35 46.38 5.89 39.74 0.1424 31.67 76.67 27.08 73.14 0.0525 33.99 78.29 28.42 74.22 0.0526 12.12 52.98 10.90 51.11 0.0427 13.98 58.41 14.19 58.74 -0.0128 14.27 58.87 14.00 58.44 0.01Table 10: Comparison of Arc Flows for the Additive and Nonadditive Casesin the Presence of Tolls 45



Linear Value of Time Nonlinear Value of TimePath Path Flow (100's) Path Cost ($) Path Flow (100's) Path Cost ($)1-4 13.89 4.18 14.46 3.561-4-7 13.84 10.56 14.50 9.852-1-4 9.06 9.99 6.92 8.502-1-4-7 0.00 16.38 11.42 18.50Table 11: Comparison of Some Path Flows for the Additive and NonadditiveCases in the Presence of Tolls
46



Arc Tail Node Head Node Travel Time (min.) Arc Flow (100's)1 1 2 14.06 58.542 1 4 14.06 58.543 1 5 10.69 50.774 2 1 23.49 69.965 2 3 23.49 69.976 2 5 6.04 40.247 3 2 14.06 58.548 3 5 10.69 50.779 3 6 14.06 58.5410 4 1 23.49 69.9711 4 5 6.04 40.2412 4 7 23.49 69.9613 5 2 34.19 72.0514 5 4 34.19 72.0515 5 6 34.19 72.0516 5 8 34.19 72.0517 6 3 23.49 69.9618 6 5 6.04 40.2519 6 9 23.49 69.9620 7 4 14.06 58.5421 7 5 10.69 50.7822 7 8 14.06 58.5423 8 5 6.04 40.2524 8 7 23.49 69.9625 8 9 23.49 69.9626 9 5 10.69 50.7727 9 6 14.06 58.5428 9 8 14.06 58.54Table 12: Arc Flows for the Gravity Model47



O D Flow (100's) Demand (100's)1 2 22.95 22.951 3 14.17 14.171 4 22.95 22.951 5 23.86 23.861 6 11.30 11.301 7 14.17 14.171 8 11.30 11.301 9 4.31 4.312 1 20.95 20.952 3 20.95 20.952 4 15.01 15.012 5 26.36 26.362 6 15.01 15.012 7 6.42 6.422 8 13.89 13.892 9 6.42 6.423 1 14.17 14.173 2 22.95 22.953 4 11.30 11.303 5 23.86 23.863 6 22.95 22.953 7 4.31 4.313 8 11.30 11.303 9 14.17 14.174 1 20.95 20.954 2 15.01 15.014 3 6.42 6.424 5 26.36 26.364 6 13.89 13.894 7 20.95 20.954 8 15.01 15.014 9 6.42 6.425 1 9.70 9.705 2 21.54 21.545 3 9.70 9.705 4 21.54 21.54

O D Flow (100's) Demand (100's)5 6 21.55 21.555 7 9.70 9.705 8 21.55 21.545 9 9.70 9.716 1 6.42 6.426 2 15.01 15.016 3 20.95 20.956 4 13.89 13.896 5 26.36 26.366 7 6.42 6.426 8 15.01 15.016 9 20.95 20.957 1 14.17 14.177 2 11.30 11.307 3 4.31 4.317 4 22.95 22.957 5 23.86 23.867 6 11.30 11.307 8 22.94 22.957 9 14.17 14.178 1 6.42 6.428 2 13.89 13.888 3 6.42 6.428 4 15.01 15.018 5 26.36 26.368 6 15.01 15.018 7 20.95 20.958 9 20.95 20.959 1 4.31 4.319 2 11.30 11.309 3 14.17 14.179 4 11.30 11.309 5 23.86 23.869 6 22.95 22.959 7 14.17 14.179 8 22.95 22.95Table 13: O-D Flows for the Gravity Model48



Path Flow (100's) Cost ($)1-2 22.95 1.131-2-3 14.17 5.951-4 22.95 1.131-5 23.86 0.741-5-6 11.30 8.211-4-7 14.17 5.951-5-8 11.30 8.211-5-8-9 4.31 17.862-1 20.95 2.622-3 20.95 2.622-1-4 15.01 5.952-5 26.36 0.322-3-6 15.01 5.952-1-4-7 6.42 14.452-5-8 13.89 6.732-3-6-9 6.42 14.453-2-1 14.17 5.953-2 22.95 1.133-5-4 11.30 8.213-5 23.86 0.743-6 22.95 1.133-5-4-7 4.31 17.863-5-8 11.30 8.213-6-9 14.17 5.954-1 20.95 2.624-1-2 15.01 5.954-1-2-3 6.42 14.464-5 26.36 0.324-5-6 13.89 6.734-7 20.95 2.624-7-8 15.01 5.954-7-8-9 6.42 14.455-2-1 2.70 13.015-4-1 7.01 13.015-2 21.54 5.045-2-3 2.70 13.015-6-3 7.01 13.015-4 21.54 5.04

Path Flow (100's) Cost ($)5-6 21.55 5.045-4-7 2.70 13.015-8-7 7.01 13.015-8 21.55 5.045-6-9 7.01 13.015-8-9 2.70 13.016-3-2-1 6.42 14.456-3-2 15.01 5.956-3 20.95 2.626-5-4 13.89 6.736-5 26.36 0.326-9-8-7 6.42 14.456-9-8 15.01 5.956-9 20.95 2.627-4-1 14.17 5.957-5-2 11.30 8.217-5-2-3 4.31 17.867-4 22.95 1.137-5 23.86 0.747-5-6 11.30 8.217-8 22.94 1.137-8-9 14.17 5.958-7-4-1 6.42 14.458-5-2 13.89 6.738-9-6-3 6.42 14.458-7-4 15.01 5.958-5 26.36 0.328-9-6 15.01 5.958-7 20.95 2.628-9 20.95 2.629-5-2-1 4.31 17.869-5-2 11.30 8.219-6-3 14.17 5.959-5-4 11.30 8.219-5 23.86 0.749-6 22.95 1.139-8-7 14.17 5.959-8 22.95 1.13Table 14: Path Flows for the Gravity Model49


